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Losses of Tapered Dielectric Slab Waveguides
with Axial Vanations in Index of Refraction

ROBERT SCARMOZZINO, DRAGAN V. PODLESNIK, MEMBER, IEEE, AND
RICHARD M. OSGOOD, Jr., FELLOW, IEEE

Abstract —The effects of varying the index of refraction in the cladding
along the length of a tapered dielectric waveguide are calculated using a
local normal mode analysis. It is found that in some cases the losses can be
reduced by an order of magnitude, even for short tapers whose length is of
the order of the guide dimensions.

. 1. INTRODUCTION

HE POWER losses incurred by a mode incident on a

stepped or tapered section of a waveguide have been
calculated by a variety of methods [1]-[4]. It was found
that the losses are approximately the same for steps or
short tapers (independent of the shape of the taper) and
that increasing the length of the taper will reduce the
losses. In addition, for longer tapers, adjusting the shape of
the taper can reduce the losses. However, generally it is
assumed that the index of refraction of each region is
constant along the taper. Recently [5], a special class of
curved waveguide tapers has been explored in which the
index of the core varies in a particular way throughout the
taper. These structures possess normal modes which prop-
agate without radiation loss; however at a transition be-
tween straight and tapered sections losses may still occur.
In this paper we follow a different approach, and investi-
gate the effect of arbitrarily varying the index of the
cladding along the length of the taper, in the hope of
creating a “matched” structure. We find that in some cases
we are able to reduce the total losses (including transition)
by an order of magnitude, even for short tapers whose
length is of the order of the guide dimensions. The tech-
nigque has other potential applications such as waveguide
bends, branches, and couplers.

Our motivation for considering waveguides with index
variations along the guide is provided by some recent work
[6] in which riblike waveguides were formed in GaAs via a
direct-write laser-etching technique. In that work, the lat-
eral confinement in the slab waveguide is provided by the
lower effective index of the etched regions. These etched
regions effectively form a cladding in the analogous sym-
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metric slab waveguide in the lateral direction (see Fig.
1(a)—(c)). The authors point out that by changing the etch
depth along the guide, which can be done easily and
controllably with their process, the effective index of the
cladding may be varied {7] (see Fig. 1(d) and (e)). In order
to see whether any benefit can be derived from varying the
etch depth along the guide, one must be able to calculate
propagation in a structure with longitudinal geometric and
index of refraction variations. An appropriate formalism
for such calculations is a local normal mode analysis [4],

31, [9]-

II. LocaL NORMAL MODE ANALYSIS

Consider the slab waveguide structure shown in Fig.
1(e). For z <0 or z > L, guided modes propagate without
loss. However in the “tapered” region 0 <z < L, guided
modes couple power to other guided modes, as well as to
radiation modes. In describing this coupling process, we
follow the general treatment and notation of [9]. The
transverse fields in the tapered section of the waveguide
are expressed as an expansion in local normal modes as
follows:

E =Y [cP(2)exp(~iB,z) + e (2)exp (+iB,2)] E,,

H=Y, [cf,”(z)exp(— iB,z)—c(z2)exp (+iB,z)| H,,.

(1)

The summation over » is a shorthand for a summation
over the discrete spectrum (guided modes) and an integra-
tion over the continuous spectrum (radiation modes). The
summation over forward- and backward-traveling modes
has been written explicitly, so that the propagation con-
stants 8 are assumed to have positive values. The local
normal modes (E,, H)) are the normal modes of a slab
waveguide whose parameters (width, refractive indices)
equal those of the tapered section locally. They are func-
tions of the transverse coordinates, as well as of the
longitudinal coordinate z through the dependence on the
local guide parameters. Insertion of the field expansions
into Maxwell’s equations results in coupled equations for
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Fig. 1  Sketch of (a) laser fabricated riblike waveguide; (b) conventional
rib waveguide which approximates (a); (c) “effective” slab waveguide
corresponding to (b); (d) tapered rib waveguide which approximates a
tapered laser fabricated riblike waveguide with variable etch depth; (e)
“effective” tapered slab waveguide corresponding to (d) with variable
index of refraction in the tapered section.

the mode amplitudes ¢{”):

(922)
dc#

v Rig e[ (8 -8) ¢

+ RL&—)Cl(’*)eXp [ifz(pB#+BV) dz’]}_ (2)

Providing that the propagation constants are real, which
applies in our case, the coupling coefficients R,(L{f"’) can be
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expressed as [9]

pweg . p aN? i

— [ E
4(pB,—4B,) fS(z) g dz

Here the integration is over the transverse cross section at
z, S(z). The function N(x, y,z) is the refractive index
profile in the taper.

The solution of the system of equations (2) requires the
specification of each mode amplitude at one or the other
end of the taper (i.e., at z =0 or z=L). For our calcula-
tion we will assume that only one guided mode can exist
all along the taper. We consider that the forward-traveling
guided mode is incident on the left with unit amplitude,
and that all other modes are incident on the taper (at z=0
for forward modes, and z = L for backward modes) with
zero amplitude, i.e.,

c(0) =1
c(0)=0

. q) —
R (z) =

(3)

(L) =0
c{(L) =0.

(4)

We wish to calculate the power lost from the incident
guided mode to the reflected guided mode and to the
radiation modes, which is given by

é1,»£=|c,<->(o>12+ Jle@ [ do+ fles (L) do. (5)

The index p, used here to label the radiation modes, will
become clear when we introduce explicit expressions for
the local normal modes. The range of integration will also
be considered later.

In order to render the system of equations (2) tractable,
we perform a perturbation calculation and assume that, to
first order,

¢{*)(z) = constant

a(2) <cP(2),  (pw)#(+.0).  (6)

This corresponds to saying that the incident mode does not
lose significant power to the other modes over the length
of the taper, which is the case of interest. Equation (2)
becomes

(¢2]
dc,;

P R exp [i/z(pﬁﬂ—ﬁl) dz’].

This can be integrated to yield

o (z) = [ R exp [i [ (e8.-8) d} d' ()

where z* is the location at which the mode is “born,” i.e.,
the location such that the mode has zero amplitude beyond
z* (before z* for forward modes, and after z* for back-
ward modes). For the reflected guided mode we have from
(4) that z*= L in all cases. For the case of constant (in z)
indices of refraction, we have from (4) that z*=0 for
forward radiation modes, and z* = L for backward radia-
tion modes. For the case of variable index, it can happen
that, for example, a forward radiation mode can exist on
the right, but not on the left, and so must be born

(7)
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somewhere in the middle. The location z*, which depends
on the mode p, was introduced to handle this type of
situation. Note that for the purposes of calculating the
power loss, the precise phase of clfl’)(z) is unimportant as
it cancels out in (5). Therefore the lower limit for the phase
integral can be chosen arbitrarily, provided it is within the
range of the mode’s existence.

For simplicity we will restrict our calculation to the case
of even TE modes propagating in a symmetric slab wave-
guide in which we assume d/dy = 0. We denote the half-
width of the guide by d, and the indices of refraction in
the core and cladding are denoted by N, and N, respec-
tively. The normal modes for this structure are well known,
and are presented here for completeness. The even TE
guided modes are

Eyg(x)=AgM, x<d

: cosid

Ef(x)=A exp[—-v(x—-d)], x>d
2N2 BZ

— Y = K2N? - p2
20py Y x?

A

(©)

The dispersion relation for the guided mode propagation
constant is

2
8 B 1+vyd k*+v%

tan kd = y/k. (10)
The even TE radiation modes are
COS 0x
E-yr(x):A’cosod’ x<d
o sinod
E;(x)=A,|cosp(x—d)~ 2 coved sinp(x—d)]|,
x>=d
o2 = kNP - g2
2N2 BZ
g2z 20 o ‘ (11)
’ a8  p*+oe2tan’od

Note that these expressions have been written for x > 0,
and are to be extended as even functions of x.

The normal modes expressed by (9)—(11) are functions
of the transverse coordinate x. They are transformed into
local normal modes depending on both x and z by allow-
ing the guide parameters d, N;, and N, that appear in
(9)—(11) to depend on z. When this is the case we may
write the following expression for the index of refraction in
the taper:

N(x,z)’= Nf(z)z[l— u(x—d(z))]
+ N(2)u(x—d(z2)). (12)

Here u(t) is the unit step function. We may differentiate

143

this to obtain

= (W= N ()8 (x—d()) + W)

J1—u(x—d(2)] +[N] u(x = d(z)). (13)
Here the primes represent derivatives with respect to z.
We now have all that we need to calculate the coupling
coefficients from (3). We will assume for simplicity that
only d and N, depend on z, as this is the case for the
riblike waveguides with variable etch depth. The result of
this straightforward calculation is
2

R(—+) 1K Y
2 B*1+vd Fi(z)
F, d'(z L 14
+_—___.._
(2)=d'(z) 27, N = N (14)
r,+) = !
P B_pIBz
v v P\,
BB 1+vd P rotaned| )

Y, + o tanod [N,Z]’
712+ P2 Nf2_ MZ °

E(z)=d'(z)+

(15)

In these expressions note that (in addition to 4 and N,) 8,
Kk,, and vy, depend on z, and 8 and ¢ depend on both p
and z. The radiation modes are labeled by p, which is
constant in z.

With expressions for the coupling coefficients, we can
evaluate the mode amplitudes from (8). These are inserted
into (5) to calculate the power loss. We must now consider
two related issues: the evaluation of z* for a particular
mode p, and the range of integration for p. In general, at a
given z there exist radiation modes for 0 < p < o0; how-
ever modes with p > kN,(z) are evanescent and carry no
power. Therefore to obtain the relative power in the for-
ward or backward modes at a given z one must calculate

o (2) dp. (16)

In evaluating z*, we consider, for example, that N,(z)
increases monotonically from a minimum at z=0 to a
maximum at z = L. For forward-traveling modes we need
to evaluate ¢{")(L). Forward modes with 0 <p <kN™
can exist throughout the taper, and by (4) were born at
z=0; therefore we must use z*=0 in (8). However at
z= L forward modes can also exist in the range kN,™" <

< kN;™*, For p in this range, a mode can exist only for
z 2 z*, where z* satisfies kN,(z*) =p. Considering the
backward-traveling modes, we must compute c{~(0). All
the backward modes at z =0 have 0 < p <AN,™" and can
exist throughout the taper; therefore for these modes z* =
L. However for p in the range kN™" < p < kN,™*, back-
ward modes will be born at z*= L, and will “die” (ie.,
will be converted to other modes) before they reach z=0.

PP(z) _ /kN,(z)
P 0
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Regardless of their fate, these modes will draw power from
the incident mode. This additional power loss can be
included in (5) if we extend the range of integration for
backward modes to p=kN™ and replace c{ ’(0) with
{7z, where z' satisfies kN,(z") = p. In summary, for
monotonically increasing N,(z), we evaluate the power
loss from

S =l [ o
[N [dp (172)
0

where for the reflected guided mode z*=L and z'=0.
For the backward radiation modes,

z¥=L =0, 0<p<kN,mi“
z*=1L 2 kN(ZY) =p, kN < p < KN
(17b)
and for the forward radiation modes
z¥=( =1, 0 < p < kN
z* kN,(z*) =»p Zf=1r, EN™® < p < kN™2,
(17¢)

The case for monotonically decreasing N,(z) can be ana-
lyzed similarly.

I1II. NUMERICAL RESULTS

Given the taper parameters d(z), N,(z), and N, we are
now in a position to calculate the mode amplitudes and
losses by numerical integration of (8) and (17) (see the
Appendix for details).

In the calculations that follow, we assume the following
form for the shape of the taper:

1—exp(—bz/L)
1—exp(—5)

d(z) =dy+(d,—d,) (18)

Here d, and d; are the guide half-widths on the left and
right of the taper, L is the length of the taper, and b is a
parameter controlling the shape of the taper. This form
was chosen to allow any easy transition from a linear taper
(b — 0) to an exponential taper of the type considered in
(3

Before exploring variable tapers, we will consider some
properties of losses in simple linear tapers. Fig. 2 shows
the spectrum of radiation losses for a typical linear taper.
It is more interesting to consider the spectrum versus 8
instead of p; therefore we have plotted |cp|2( B/p) versus
B, which includes the appropriate factor from the change
of variables. Note also that in the figure the backward-
traveling modes are plotted as having negative 8. We see
from the figure that the power lost to the forward radia-
tion modes is much greater than that lost to the backward
modes. In addition, the maximum in the spectrum occurs
for B near, but not nearest, B,
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Fig. 2. Spectrum of radiation losses for a typical linear taper. Here
kdy=1.d, /d,=05, L/dy=1, N, =15, and N, =1.0.

Following [3], we calculate the losses as a function of the
length of the taper. Fig. 3 shows the result of this calcula-
tion, where the individual components of the loss have
been plotted separately. We can see that in general, the
power lost to the forward radiation modes dominates that
lost to the backward radiation modes and to the reflected
guided mode. In addition, the power lost to the reflected
guided mode can be comparable to that lost in the back-
ward radiation modes. Also note that the reflected power
exhibits a smooth oscillatory behavior with respect to
L /d,, which when plotted on a linear scale turns out to be
periodic in L/d, with period AL /d, = 2.63.

Next we consider the case of constant N, and see what
can be done by varying the shape of the taper alone. The
parameter b in (18) was varied so as to minimize the total
losses at L/d,=20 (b=1.7). The total losses for this
“optimal” exponential taper were calculated as a function
of L/d,, and are plotted in Fig. 4, along with results for
the linear taper. We see that (as observed in [3] for round
waveguides) for long tapers, the exponential taper yields a
reduction in the losses over the linear taper. However, for
short tapers no benefit is derived from adjusting the shape
of the taper.

Note that there is a pronounced kink in the power loss
curve for the exponential taper at L/d, = 30 (see Fig. 4),
the origin of which is unknown. It does not appear to be
the result of numerical error, as this was carefully checked.
It is also not due to a minimum in the reflected power (see
Fig. 3), as that is a small component of the total loss. It is
possible that the choice of b is not optimal for all L/d,,
leading to a dip near L/d,= 20, at which the losses were
minimized. However a less pronounced kink also appears
in the simple linear taper, for which this explanation does
not apply, and a dip at L/d,=30 also occurs for the
variable index taper (see following discussion), which was
optimized at L/d,=1; therefore the cause of these kinks
is likely to be something other than nonglobal minimiza-
tion.

As an aside, note that to obtain a reduction in losses, the
parameter b in (18) had to be positive, so that the taper
had its largest slope at the wide end, where B, is maximum.
In [3] the author explains why this is so, apparently in
general. However, it turns out that for larger kd,, (beyond
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Fig. 3. Power loss into the reflected guided mode, and backward and

forward radiation modes, versus length of taper. Here kdy =1, d; /d,
=0.5, N, =15, and N, =10.
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Fig. 4. Total power loss versus taper length for linear, exponential, and
variable index tapers. Here kd, =1, d, /dy=0.5, N, =15, and N, =
1.0. For the exponential taper, b=1.7. For the variable index taper,
a, =031, N,,=1.0, and N, =1.086.

the minimum in a AP/P versus kd, curve), to achieve a
reduction in losses the appropriate sign of b is negative.

Now we allow N, to depend on z and see what benefit
can be derived from this. What form should N,(z) take so
as to minimize the total losses? One idea would be to let
N,(z) be such that the propagation constant of the inci-
dent mode, B,(z), is constant in z. Then the taper would
be “matched” to the incident mode. It turns out that for
this type of taper, (14) for R$~*) vanishes, so that there is
no reflected guided mode as we expected. However this
leads to radiation losses which are higher than for the case
of constant N,(z). Instead, we try to “minimize” both the
F,(z) and F,(z) functions in (14) and (15) mmultaneously
To do this we write the F functions in the form

(2]

“(NI(Z)) Nf2 - N

F(z)=d'(z)+ (19)

Given d(z), if we require F(z) to be identically zero, this
becomes a nonlinear differential equation for N,(z), which,
in general, will not have the same solution for two differ-
ent a’s. Therefore we cannot simultaneously eliminate
both the reflected and radiation modes. However, if we
choose a to be a constant (in z) parameter, then we can
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solve for N,(z) and then vary « so as to minimize the total
losses with respect to this class of functions. When F=0,
a(z) = a, = constant, (19) can be integrated to yield

N/(Z)2 = Nf2 _(Nfz - NI(Q)Z) eXp [“o(d(z) - d(O))]
| (20)

With the above form for N,(z), a linear taper for d(z),
and «, chosen so as to minimize the losses at L/d,=1
(ap = 0.31), the losses versus L/d, were calculated and
are plotted in Fig. 4, along with the results for the constant
index linear and exponential tapers. We see from the figure
that even for short tapers, where adjusting only the shape
of the taper yields no improvement, over an order of
magnitude reduction in losses can be achieved with the
variable index taper. To achieve the same level of losses as
at L/d,=1, the linear taper would have to be more than
30 times as long. Therefore a great economy in space can
be achieved by using variable index tapers in integrated
optics circuits. Note that for large L/d, the improvement
over the linear taper is not as great and that in fact, for
large enough L/d,, the losses for the exponential taper
seem to approach those for the variable index taper. This
is due to our choice of a,, which minimizes the losses at
L /d0 =1. However, by choosing e, appropriately one can
minimize the losses at any desired taper length. For exam-
ple, at L /do =100 the losses for the variable index taper
can be further reduced (from those in Fig. 4) to 0.0014
percent by using a, = 0.26. These losses are 2.5 times less
than those for the exponential taper at this length. By
combining the exponential taper shape with the variable
index profile, it is possible to obtain losses more than 20
times less than with the exponential taper alone (b=1.7,
o, = 0.25, losses = 0.00028 percent).

An interesting point about the variable index taper is
that with an optimal choice for a,, the power lost to the
reflected guided mode is comparable to that lost in the
forward radiation modes. In fact, the dip in the variable
index taper loss curve occurring at L /d, = 2-3 (see Fig. 4)
is due to the reflected power going through a minimum in
L/d, (see, e.g., Fig. 3). For larger L/d, the reflected
power is much smaller than the forward radiated power,
and has negligible effect on the total losses displayed in
Fig. 4.

The foregoing discussion demonstrates the utility of
variable index tapers in slab waveguides. We now discuss
the application of this concept to the laser-fabricated rib-
like waveguides studied in [6] and [7]. A typical laser-
fabricated guide might have k =4.064 pm™!, d,=1 pm,
N, = 3358, and N, =3.273 (corresponding to an
air /GaAs /Al ;Ga, ;As slab waveguide with GaAs thick-
ness hy=2 pm, refractive indices [10] n,;, =1, ngu, =
3.375, npgaas = 3-189, and trench edges spaced 2 pm
apart and etched to a depth of 1.39 pm). A simple linear
taper in such a guide with d; /d,=0.5 and L/d,=1
would have total losses of = 4.8 percent. If the etch depth
at the narrow end of the taper is decreased to 0.97 um,
corresponding to N, = 3.325, and is tapered from 1.39 pm,
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corresponding to N, = 3.273 according to (20) with o, =1.9,
the resulting variable index taper would have total losses
of =1.7 percent, yielding a factor of 3 improvement.

There is one caveat which must be discussed in connec-
tion with this idea of varying the index of refraction along
the taper in order to reduce the losses. It was brought to
our attention [11] that the higher index of refraction at the
narrow end of the taper has the effect of broadening the
mode’s lateral profile. Depending on the application, the
reduction in physical mode size may be more important
than the reduction in geometric size of the taper. We can
define the mode size, for example, by the half-width within
which 80 percent of the power is carried. For the example
guides discussed in the previous paragraph, the mode size
at the “narrow” end of the variable index taper is 58
percent larger than that for the constant index taper, and
in fact is slightly larger than the mode size at the “wide”
end of the taper. However, recall that the loss was im-
proved by a factor of 3. If we characterize a good taper by
a low product of loss with mode size, then the variable
index taper is still better than the constant index taper by
about a factor of 2.

When the taper application is such that the mode size is
important, it would be desirable to fix the output mode
size at the desired value (equivalently, fix the index at the
end of the taper) and then attempt to minimize the loss.
This can be accomplished if we increase our freedom in the
choice of a and let a(z) = a, + §z. With a linear taper for
d(z), and the above form for «, (20) is replaced by

N,(z)* = NP = (N2 = N, (0))

-exp [(aoz + %Szz)wL - do)/L}. (21)

For a given «a, 8 can be chosen to obtain the desired index
N,(L) at the end of the taper; then «, can be varied to
minimize the losses.

Before concluding, we would like to mention another
potential application of variable index tapers which fol-
lows immediately from the local normal mode analysis.
Suppose that it is desired to make a taper from a double-
mode guide to a single-mode guide (or vice versa), and that
the radiation losses are deemed unimportant, but coupling
between the guided modes is still a problem. By a suitable
choice of index profile, it is possible to make the coupling
between the two guided modes identically zero, so that the
output of the taper contains the unperturbed (except for
radiation losses) single mode.

IV. CoNcLUSION

The effects of varying the index of refraction in the
cladding along the length of a tapered waveguide have
been calculated. It was found that in some cases (e.g.,
kdy=1, N;=1.5, N,=1.0, 2-to-1 taper) the losses can be
reduced by an order of magnitude, even for short tapers
whose length is of the order of the guide dimensions. This
technique has several other potential uses, including wave-
guide bends, branches, and couplers. The application of
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this variable index waveguide concept is currently being
pursued for these other structures.

APPENDIX

The evaluation of the mode amplitudes via (8) requires
two nested integrations. In addition, for variable index
tapers the integrand in (8) can be singular at one of the
endpoints. Although the singularity is integrable, a numeri-
cal integration using an open formula can be time consum-
ing, especially if a nonadaptive procedure is employed. It
turns out to be more efficient to change variables in (7)
and integrate the resulting ODE directly via an adaptive
numerical method. The singularity can be dealt with by
starting the integration slightly away from the singular
point, and by deriving an analytical expression for the
proper initial value there.

We can transform (7) into a more convenient form by
letting ¢(7) = a'? exp[if*pB, dz'], which results in

da'?
B . —_
5 +ipB,aP =R eV =0 (Ala)

a‘™) = exp [— ifZB,. dz’]. (Alb)

The phase integral in (Alb) can be evaluated and tabu-
lated once and is independent of the mode u, so the
evaluation of af/’) from (Ala) requires a single integration
of the ODE, as opposed to the two nested integrations in
(8) required to evaluate cfbl’). The mode amplitudes c,ﬁl’)
and a,ﬁp ) differ only by a phase factor; therefore in evalu-
ating the power loss via (17) we can simply replace ¢{”’ by
al?”,

#When the right-hand side of (Ala) is singular at the
starting point of integration z,, we write an analytic solu-
tion for (Ala) similar to (8), and expand it around z, to
leading order in Az. Dropping the g, (p) notation for
simplicity, and assuming a(z,) = 0, the leading order solu-
tion for a is

2o+ Az

a(zO+Az)=/ Q(z) dz".

0

If the singularity in Q(z) goes like (z —z,) "%, this can
easily be integrated to yield

1
a(zO+Az) ='1_—qQ(ZO+AZ)AZ.

For our particular choice of functions, ¢ =1/4; therefore
the ODE in (Ala) should be integrated from z, + Az with
the initial value

a(zO+Az)=gQ(zO+Az) Az. (A2)

Similar reasoning yields the procedure for dealing with
singularities at the endpoint of integration.
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