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Losses of Tapered Dielectric Slab Waveguides
with Axial Variations in Index of Refraction
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Abstract —The effects of varying the index of refraction in the cladding

along the length of a tapered dielectric wavegnide are calculated using a

bent normal mode analysis. It is found that in some cases the losses can be

reduced hy an order of magnitude, even for short tapers whose length is of

the order of the guide dimensions.

I. INTRODUCTION

T HE POWER losses incurred by a mode incident on a

stepped or tapered section of a waveguide have been

calculated by a variety of methods [1]–[4]. It was found

that the losses are approximately the same for steps or

short tapers (independent of the shape of the taper) and

that increasing the length of the taper will reduce the

losses. In addition, for longer tapers, adjusting the shape of

the taper can reduce the losses. However, generally it is

assumed that the index of refraction of each region is

constant along the taper. Recently [5], a special class of

curved waveguide tapers has been explored in which the

index of the core varies in a particular way throughout the

taper. These structures possess normal modes which prop-

agate without radiation loss; however at a transition be-

tween straight and tapered sections losses may still occur.

In this paper we follow a different approach, and investi-

gate the effect of arbitrarily varying the index of the

cladding along the length of the taper, in the hope of

creating a” matched” structure. We find that in some cases

we are able to reduce the total losses (including transition)

by an order of magnitude, even for short tapers whose

length is of the order of the guide dimensions. The tech-

nique has other potential applications such as waveguide

bends, branches, and couplers.

Our motivation for considering waveguides with index

variations along the guide is provided by some recent work

[6] in which riblike waveguides were formed in GRAS via a

direct-write laser-etching technique. In that work, the lat-

eral confinement in the slab waveguide is provided by the

lower effective index of the etched regions. These etched

regions effectively form a cladding in the analogous sym-
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metric slab waveguide in the lateral direction (see Fig.

l(a)-(c)). The authors point out that by changing the etch

depth along the guide, which can be done easily and

controllably with their process, the effective index of the

cladding may be varied [7] (see Fig. l(d) and (e)). In order

to see whether any benefit can be derived from varying the

etch depth along the guide, one must be able to calculate

propagation in a structure with longitudinal geometric and

index of refraction variations. An appropriate formalism

for such calculations is a local normal mode analysis [4],

[8], [9].

II. LOCAL NORMAL MODE ANALYSIS

Consider the slab waveguide structure shown in Fig.

l(e). For z <0 or z > L, guided modes propagate without

loss. However in the “tapered” region 0< z <L, guided

modes couple power to other guided modes, as well as to

radiation modes. In describing this coupling process, we

follow the general treatment and notation of [9]. The

transverse fields in the tapered section of the waveguide

are expressed as an expansion in local normal modes as

follows:

E,=~[cf+J(z) exp(–i&z) +cj-)(z) exp(+ i&z)]&
v

Jl, =~[cf+J(z) exp(-i&z) –cj-)(z) exp(+i&z)]@,t.
v

(1)

The summation over v is a shorthand for a summation

over the discrete spectrum (guided modes) and an integra-

tion over the continuous spectrum (radiation modes). The

summation over forward- and backward-traveling modes

has been written explicitly, so that the propagation con-

stants ~ are ass~me~ to have positive values. The local

normal modes (E,, Ifu) are the normal modes of a slab

waveguide whose parameters (width, refractive indices)

equal those of the tapered section locally. They are func-

tions of the transverse coordinates, as well as of the

longitudinal coordinate z through the dependence on the

local guide parameters. Insertion of the field expansions

into Maxwell’s equations results in coupled equations for
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Fig. 1 Sketch of (a) laser fabricated riblike waveguide; (b) conventional
rib waveguide which approximates (a): (c) “effective” slab waveguide

corresponding to (b); (d) tapered rib waveguide which approximates a

tapered laser fabricated riblike waveguide with variable etch depth; (e)
“effective” tapered slab waveguide corresponding to (d) with variable
index of refraction in the tapered section.

the mode amplitudes c~~):

Providing that the propagation constants are real, which

applies in our case, the coupling coefficients lt~’ ~) can be

expressed as [9]

Here the integration is over the transverse cross section at

z, S(z). The function N(x, y, z) is the refractive index

profile in the taper.

The solution of the system of equations (2) requires the

specification of each mode amplitude at one or the other

end of the taper (i.e., at z = O or z = L). For our calcula-

tion we will assume that only one guided mode can exist

all along the taper. We consider that the forward-traveling

guided mode is incident on the left with unit amplitude,

and that all other modes are incident on the taper (at z = O

for forward modes, and z = L for backward modes) with

zero amplitude, i.e.,

C$+)(o) =1 C:-)(L)=O

c~+)(o) = o C:-)(L) =0. (4)

We wish to calculate the power lost from the incident

guided mode to the reflected guided mode and to the

radiation modes, which is given by

:=[C:-)(0) l’+ /lc$-)(0)12dp+/lcj+ )( L)12dp. (5)

The index p, used here to label the radiation modes, will

become clear when we introduce explicit expressions for

the local normal modes. The range of integration will also

be considered later.

In order to render the system of equations (2) tractable,

we perform a perturbation calculation and assume that, to

first order,

c:+)(z) = constant

Cjp)(z) << c:+)(z), (p, p)+(+j i). (6)

This corresponds to saying that the incident mode does not

lose significant power to the other modes over the length

of the taper, which is the case of interest. Equation (2)

becomes

de:)

—= [D 1
R~’+)exp i ‘ p&j31) dz’ .

dz
(7)

This can be integrated to yield

[/( 1
c(P)(z) = ~’R~’+Jexp i “ p~P – /31) dz” dz’ (8)P

z*

where z* is the location at which the mode is “born,” i.e.,

the location such that the mode has zero amplitude beyond

z* (before z * for forward modes, and after z* for back-

ward modes). For the reflected guided mode we have from

(4) that z*= L in all cases. For the case of constant (in z)

indices of refraction, we have from (4) that z* = O for

forward radiation modes, and z* = L for backward radia-

tion modes. For the case of variable index, it can happen

that, for example, a forward radiation mode can exist on

the right, but not on the left, and so must be born
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somewhere in the middle. The location z *, which depends

on the mode p, was introduced to handle this type of

situation. Note that for the purposes of calculating the

power loss, the precise phase of c~p)(z) is unimportant as

it cancels out in (5). Therefore the lower limit for the phase

integral can be chosen arbitrarily, provided it is within the

range of the mode’s existence.

For simplicity we will restrict our calculation to the case

of even TE modes propagating in a symmetric slab wave-

guide in which we assume d/dy = O. We denote the half-

width of the guide by d, and the indices of refraction in

the core and cladding are denoted by IVf and N, respec-

tively. The normal modes for this structure are well known,

and are presented here for completeness. The even TE

guided modes are

COS KX

q’(x) = ~g=j x+d

E~(~)=Agexp [-y(x– d)], X>d

this to obtain

6’N2
— N;-N~)d’(z)8(x-d( z))+[N:]’

dz = (

[l-u (x-d(z))] +[N:]’u(x -d(z)). (13)

Here the primes represent derivatives with respect to z.

We now have all that we need to calculate the coupling

coefficients from (3). We will assume for simplicity that

only d and NI depend on z, as this is the case for the

riblike waveguides with variable etch depth. The result of

this straightforward calculation is

(14)

The dispersion relation for the guided mode propagation

constant is

~(->+)=x “ ~(z)
11

2fl~ l+y,d g

1 [N;]’
F’(Z) =d’(z)+ —

2yi N? – N?

R:,+) = “

b - Pbz

“{

k2(N~– N~) yi
1/2

P=

1+ yzd p=+ u=tan=ud )

g(z)
@B,

~(z) =d’(z)+
y,+utanad [N;]’

Y,=+ P=
N? – N,z “

(9)

(15)

tanKd = y/K. (lo)

The even TE radiation modes are

Cos ox

q(x) = 4=! x<d

[

u sin od

1
E;(x) =A, cosp(x– d)–--=sinp(d)d) ,

x>d

02=k2N~2–j32

#=k2N:-fi2

2q.lo
A:. — P2 ,

n# p2 + u=tan=od”
(11)

Note that these expressions have been written for x >0,

and are to be extended as even functions of x.

The normal modes expressed by (9)–(11) are functions

of the transverse coordinate x. They are transformed into

local normal modes depending on both x and z by allow-

ing the guide parameters d, N~, and N{ that appear in

(9)-(11) to depend on z. When this is the case we may

write the following expression for the index of refraction in

the taper:

N(x, z)2=Nf(z)2[l -z+-ti(z))]

+Nl(z)2u(x– d(z)). (12)

Here U(t) is the unit step function. We may differentiate

In these expressions note that (in addition to d and Nl) /3,,

K,, and y, depend on z, and ~ and o depend on both p

and z. The radiation modes are labeled by p, which is

constant in z.

With expressions for the coupling coefficients, we can

evaluate the mode amplitudes from (8). These are inserted

into (5) to calculate the power loss. We must now consider

two related issues: the evaluation of z* for a particular

mode p, and the range of integration for p. In general, at a

given z there exist radiation modes for O < p < co; how-

ever modes with p > kN,( z ) are evanescent and carry no

power. Therefore to obtain the relative power in the for-

ward or backward modes at a given z one must calculate

Pqz)

J

W(Z) ~(p) z

P ‘o
I ~ ( )12dp. (16)

In evaluating z *, we consider, for example, that Nl( z )

increases monotonically from a minimum at z = O to a

maximum at z = L. For forward-traveling modes we need

to evaluate C:+)(L). Forward modes with .0< p < kNlm’n

can exist throughout the taper, and by (4) were born at

z = O; therefore we must use z* = O in (8). However at

z = L forward modes can also exist in the range kNlmin <

p < kNlmm. For p in this range, a mode can exist only for

z > z*, where z* satisfies kNl (z*) = P. Considering the

backward-traveling modes, we must compute c~-)(0). All

the backward modes at z = O have 0< p < kN[mn and can

exist throughout the taper; therefore for these modes z* =

L. However for p in the range kNlmti < p < kN1mz, back-

ward modes will be born at z* = L, and will “die” (i.e.,
will be converted to other modes) before they reach z = O.
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Regardless of their fate, these modes will draw power from

the incident mode. This additional power loss can be

included in (5) if we extend the range of integration for

backward modes to p = kN1m= and replace C$-)(0) with

c~–)(z~), where zt satisfies kNl ( Z?) = p. In summary, for

monotonically increasing N,(z), we evaluate the power

loss from

:=lc:-)(zt)l’+J’~’maxlc:-)(zt)l’dp+
o

Power Spectrum
0.1 I I

J
klv,m= C:+)(zt) 2dp (17’a)

o

where for the reflected guided mode z* = L and Z* = O.

For the backward radiation modes,

Z*=L Z? = (),

z*=L Z7: kN[(zt) ‘p,

and for the forward radiation modes

Z*=O Z?=L,

Z*: kN, (z*) = p zf=L,

0< p < kN,min

kN,-” < p < kN[m=

(17b)

0< p < kNfmin

kN[-n < p < kNl~u.

(17C)

The case for monotonically decreasing Nl(z) can be ana-

lyzed similarly.

III. NUMERICAL RESULTS

Given the taper parameters d(z), Nl(z), and Nf, we are

now in a position to calculate the mode amplitudes and

losses by numerical integration of (8) and (17) (see the

Appendix for details).

In the calculations that follow, we assume the following

form for the shape of the taper:

l–exp(–bz/L)
d(z) =do+(d=– do)

l–exp(–b) “
(18)

Here do and d~ are the guide half-widths on the left and

right of the taper, L is the length of the taper, and b is a

parameter controlling the shape of the taper. This form

was chosen to allow any easy transition from a linear taper

(b ~ O) to an exponential taper of the type considered in

[3].

Before exploring variable tapers, we will consider some

properties of losses in simple linear tapers. Fig. 2 shows

the spectrum of radiation losses for a typical linear taper.

It is more interesting to consider the spectrum versus /3

instead of p; therefore we have plotted Ico12(~/p) versus

~, which includes the appropriate factor from the change

of variables. Note also that in the figure the backward-

traveling modes are plotted as having negative ~. We see

from the figure that the power lost to the forward radia-

tion modes is much greater than that lost to the backward

modes. In addition, the maximum in the spectrum occurs

for /3 near, but not nearest, ~l.

–1 o
P

Fig. 2. Spectrum of radiation losses for a typicaf tinear taper. Here
kd(} = 1, d,/J(, = 0.5, L/d. =1, N, =1.5, and N, =1.0.

Following [3], we calculate the losses as a function of the

length of the taper. Fig. 3 shows the result of this calcula-

tion, where the individual components of the loss have

been plotted separately. We can see that in general, the

power lost to the forward radiation modes dominates that

lost to the backward radiation modes and to the reflected

guided mode. In addition, the power lost to the reflected

guided mode can be comparable to that lost in the back-

ward radiation modes. Also note that the reflected power

exhibits a smooth oscillatory behavior with respect to

L/do, which when plotted on a linear scale turns out to be

periodic in L/dO with period AL/d. = 2.63.

Next we consider the case of constant Ni, and see what

can be done by varying the shape of the taper alone. The

parameter b in (18) was varied so as to minimize the total

losses at L/d. = 20 (b= 1.7). The total losses for this

“optimal” exponential taper were calculated as a function

of L/do, and are plotted in Fig. 4, along with results for

the linear taper. We see that (as observed in [3] for round

waveguides) for long tapers, the exponential taper yields a

reduction in the losses over the linear taper. However, for

short tapers no benefit is derived from adjusting the shape

of the taper.

Note that there is a pronounced kink in the power loss

curve for the exponential taper at L/d. = 30 (see Fig. 4),
the origin of which is unknown. It does not appear to be

the result of numerical error, as this was carefully checked.

It is also not due to a minimum in the reflected power (see

Fig. 3), as that is a small component of the total loss. It is

possible that the choice of b is not optimal for all L/do,

leading to a dip near L/d. = 20, at which the losses were

minimized. However a less pronounced kink also appears

in the simple linear taper, for which this explanation does

not apply, and a dip at L/d. = 30 also occurs for the

variable index taper (see following discussion), which was

optimized at L/d. =1; therefore the cause of these kinks

is likely to be something other than nonglobal minimiza-

tion.

As an aside, note that to obtain a reduction in losses, the

parameter b in (18) had to be positive, so that the taper

had its largest slope at the wide end, where /3, is maximum.

In [3] the author explains why this is so, apparently in

general. However, it turns out that for larger kdo (beyond
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the minimum in a A P\P versus kdO curve), to achieve a

reduction in losses the appropriate sign of b is negative.

Now we allow N[ to depend on z and see what benefit

can be derived from this. What form should Nl( z ) take so

as to minimize the total losses? One idea would be to let

N{(z) be such that the propagation constant of the inci-

dent mode, &(z), is constant in z. Then the taper would

be “matched” to the incident mode. It turns out that for

this type of taper, (14) for R$,-3+) vanishes, so that there is

no reflected guided mode as we expected. However this

leads to radiation losses which are higher than for the case

of constant N,(z). Instead, we try to “minimize” both the

Fg(z) and F,(z) functions in (14) and (15) simultaneously.

To do this we write the F functions in the form

1
F(z) =d’(z)+

[N/’]’
(19)

a(N1(z)) Nf2– N12 “

Given d(z), if we require F(z) to be identically zero, this

becomes a nonlinear differential equation for N1(z), which,

in general, will not have the same solution for two differ-

ent a ‘s. Therefore we cannot simultaneously eliminate

both the reflected and radiation modes. However, if we

choose a to be a constant (in z) parameter, then we can

solve for N{(z) and then vary a so as to minimize the total

losses with respect to this class of functions. When F= O,

a(z) = aO = constant, (19) can be integrated to yield

N,(z) 2=N~-(N~- N,(0)2)exp[a,(ti(z)-ti(o))].
(20)

With the above form for Nl(z), a linear taper for d(z),

and aO chosen so as to minimize the losses at L/dO = 1

(a. = 0.31), the losses versus L/dO were calculated and

are plotted in Fig. 4, along with the results for the constant

index linear and exponential tapers. We see from the figure

that even for short tapers, where adjusting only the shape

of the taper yields no improvement, over an order of

magnitude reduction in losses can be achieved with the

variable index taper. To achieve the same level of losses as

at L/dO =1, the linear taper would have to be more than

30 times as long. Therefore a great economy in space can

be achieved by using variable index tapers in integrated

optics circuits. Note that for large L/dO the improvement

over the linear taper is not as great and that in fact, for

large enough L/dO, the losses for the exponential taper

seem to approach those for the variable index taper. This

is due to our choice of ao, which minimizes the losses at

L/dO = 1. However, by choosing aO appropriately one can

minimize the losses at any desired taper length. For exam-

ple, at L/dO = 100 the losses for the variable index taper

can be further reduced (from those in Fig. 4) to 0.0014

percent by using aO = 0.26. These losses are 2.5 times less

than those for the exponential taper at this length. By

combining the exponential taper shape with the variable

index profile, it is possible to obtain losses more than 20

times less than with the exponential taper alone (b= 1.7,

aO = 0.25, losses= 0.00028 percent).

An interesting point about the variable index taper is

that with an optimal choice for aO, the power lost to the

reflected guided mode is comparable to that lost in the

forward radiation modes. In fact, the dip in the variable

index taper loss curve occurring at L/dO = 2–3 (see Fig. 4)
is due to the reflected power going through a minimum in

L/dO (see, e.g., Fig. 3). For larger L/dO the reflected

power is much smaller than the forward radiated power,

and has negligible effect on the total losses displayed in

Fig. 4.

The foregoing discussion demonstrates the utility of

variable index tapers in slab waveguides. We now discuss

the application of this concept to the laser-fabricated rib-

like waveguides studied in [6] and [7]. A typical laser-

fabricated guide might have k = 4.064 pm-1, dO = 1 pm,

Nf = 3.358, and NI = 3.273 (corresponding to an

air/GaAs/Al ~3Ga ~TAs slab waveguide with GaAs thick-

ness h ~ = 2 pm, refractwe indices [10] n ~, =1, n G*. =

3.375, nMGa, = 3.189, and trench edges spaced 2 pm

apart and etched to a depth of 1.39 pm). A simple linear

taper in such a guide with d~/dO = 0.5 and L/dO = 1

would have total losses of = 4.8 percent. If the etch depth

at the narrow end of the taper is decreased to 0.97 pm,

corresponding to NI = 3.325, and is tapered from 1.39 pm,
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corresponding to N, = 3.273 according to (20) with aO = 1.9,

the resulting variable index taper would have total losses

of = 1.7 percent, yielding a factor of 3 improvement.

There is one caveat which must be discussed in connec-

tion with this idea of varying the index of refraction along

the taper in order to reduce the losses. It was brought to

our attention [11] that the higher index of refraction at the

narrow end of the taper has the effect of broadening the

mode’s lateral profile. Depending on the application, the

reduction in physical mode size may be more important

than the reduction in geometric size of the taper. We can

define the mode size, for example, by the half-width within

which 80 percent of the power is carried. For the example

guides discussed in the previous paragraph, the mode size

at the “narrow” end of the variable index taper is 58

percent larger than that for the constant index taper, and

in fact is slightly larger than the mode size at the “wide”

end of the taper. However, recall that the loss was im-

proved by a factor of 3. If we characterize a good taper by

a low product of loss with mode size, then the variable

index taper is still better than the constant index taper by

about a factor of 2.

When the taper application is such that the mode size is

important, it would be desirable to fix the output mode

size at the desired value (equivalently, fix the index at the

end of the taper) and then attempt to minimize the loss.

This can be accomplished if we increase our freedom in the

choice of a and let a(z) = aO + ilz. With a linear taper for

d(z), and the above form for a, (20) is replaced by

N,(z)2=N~-(N}-N,(0)2)

sexp [(
1 Z)(dL-do)/L]. (21)O!oz+ ;8Z

l\ L J J

For a given aO, S can be chosen to obtain the desired index

N{(L) at the end of the taper; then aO can be varied to

minimize the losses.

Before concluding, we would like to mention another

potential application of variable index tapers which fol-

lows immediately from the local normal mode analysis.

Suppose that it is desired to make a taper from a double-

mode guide to a single-mode guide (or vice versa), and that

the radiation losses are deemed unimportant, but coupling

between the guided modes is still a problem. By a suitable

choice of index profile, it is possible to make the coupling

between the two guided modes identically zero, so that the

output of the taper contains the unperturbed (except for

radiation losses) single mode.

IV. CONCLUSION

The effects of varying the index of refraction in the

cladding along the length of a tapered waveguide have

been calculated. It was found that in some cases (e.g.,

kdO = 1, Nf = 1.5, N,= 1.0, 2-to-1 taper) the losses can be

reduced by an order of magnitude, even for short tapers

whose length is of the order of the guide dimensions. This

technique has several other potential uses, including wave-

guide bends, branches, and couplers. The application of

this variable index waveguide concept is currently being

pursued for these other structures.

APPENDIX

The evaluation of the mode amplitudes via (8) requires

two nested integrations. In addition, for variable index

tapers the integrand in (8) can be singular at one of the

endpoints. Although the singularity is integrable, a numeri-

cal integration using an open formula can be time consum-

ing, especially if a nonadaptive procedure is employed. It

turns out to be more efficient to change variables in (7)

and integrate the resulting ODE directly via an adaptive

numerical method. The singularity can be dealt with by

starting the integration slightly away from the singular

point, and by deriving an analytical expression for the

proper initial value there.

We can transform (7) into a more convenient form by
(PJ = a~~ exp [ ~J ‘p~p &’], which results inletting CP

da~j
(P) = ~(P!+)a(+) ~— + ip&aP

dz [ Q~p) (Ala)

a~+=e~~[-i~&dz]. (Alb)

The phase integral in (Alb) can be evaluated and tabu-

lated once and is independent of the mode V, so the

evaluation of a~~ from (Ala) requires a single integration

of the ODE, as opposed to the two nested integrations in

(8) required to evaluate c~p). The mode amplitudes C;P)

and a$p ) differ only by a phase factor; therefore in evalu-

ating the power loss via (17) we can simply replace C;P) by
a:).

When the right-hand side of (Ala) is singular at the

starting point of integration ZO, we write an analytic solu-

tion for (Ala) similar to (8), and expand it around ZO to

leading order in Az. Dropping the p, (p) notation for

simplicity, and assuming a (zO) = O, the leading order solu-

tion for a is

a(zO+Az) =~+AzQ(z’)dz’.
~o

If the singularity in Q(z) goes like (z – Zo) -~, this can

easily be integrated to yield

1
a(zO+Az)= —Q(ZO+AZ)AZ.

l–q

For our particular choice of functions, q = 1/4; therefore

the ODE in (Ala) should be integrated from ZO+ Az with

the initial value

a(zO+Az) =~Q(zO+Az)Az. (A2)

Similar reasoning yields the procedure for dealing with

singularities at the endpoint of integration.
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